Factoring in Skew-Polynomial Rings over Finite Fields
نویسنده
چکیده
Efficient algorithms are presented for factoring polynomials in the skew-polynomial ring F[x; σ], a non-commutative generalization of the usual ring of polynomials F[x], where F is a finite field and σ: F → F is an automorphism (iterated Frobenius map). Applications include fast functional decomposition algorithms for a class of polynomials in F[x] whose decompositions are “wild” and previously thought to be difficult to compute.
منابع مشابه
(θ, Δ)-codes with Skew Polynomial Rings
In this paper we generalize coding theory of cyclic codes over finite fields to skew polynomial rings over finite rings. Codes that are principal ideals in quotient rings of skew polynomial rings by two sided ideals are studied. Next we consider skew codes of endomorphism type and derivation type. And we give some examples.
متن کاملMathematical Aspects of (θ, δ)-Codes with Skew Polynomial Rings
In this paper we generalize coding theory of cyclic codes over finite fields to skew polynomial rings over finite rings. Codes that are principal ideals in quotient rings of skew polynomial rings by two sided ideals are studied. Next we consider skew codes of endomorphism type and derivation type. And we give some examples. Mathematics Subject Classification: Primary 94B60; Secondary 94B15, 16D25
متن کاملSome algorithms for skew polynomials over finite fields
In this paper, we study the arithmetics of skew polynomial rings over finite fields, mostly from an algorithmic point of view. We give various algorithms for fast multiplication, division and extended Euclidean division. We give a precise description of quotients of skew polynomial rings by a left principal ideal, using results relating skew polynomial rings to Azumaya algebras. We use this des...
متن کاملFactoring polynomials over Z4 and over certain Galois rings
It is known that univariate polynomials over finite local rings factor uniquely into primary pairwise coprime factors. Primary polynomials are not necessarily irreducible. Here we describe a factorisation into irreducible factors for primary polynomials over Z4 and more generally over Galois rings of characteristic p. An algorithm is also given. As an application, we factor x − 1 and x + 1 over...
متن کاملSkew constacyclic codes over finite chain rings
Skew polynomial rings over finite fields ([7] and [10]) and over Galois rings ([8]) have been used to study codes. In this paper, we extend this concept to finite chain rings. Properties of skew constacyclic codes generated by monic right divisors of x − λ, where λ is a unit element, are exhibited. When λ = 1, the generators of Euclidean and Hermitian dual codes of such codes are determined tog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 26 شماره
صفحات -
تاریخ انتشار 1998